A Wearable System for Home-Monitoring of Parkinson’s Disease

Ada Zhang
PIs: Fernando De la Torre and Jessica Hodgins
Robotics Institute, Carnegie Mellon University
Parkinson’s Disease (PD)

- Affects 7-10 million people worldwide
- Symptoms
 - Tremor
 - Bradykinesia (slowness of movement)
 - Rigidity
 - Freezing of gait
 - Sleep problems
 - Mood disorders (depression and anxiety)
 - Unexplained pain
- Combined direct/indirect cost of PD: $25 billion/year
 - Treatment
 - Social security payments
 - Lost income from inability to work
 - Frequent clinic visits
Treatment Protocol

1. Patient meets with doctor every 3-6 months
2. Patient self-reports symptoms and medication response
3. Quick motor function assessment
4. Doctor adjusts medication dosage

Patient self-reports are inaccurate and motor function assessments are a single snapshot
Motor Function Assessment

- Movement Disorder Society – Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
 - Four parts
 1. Non-motor aspects of experiences of daily living (13 questions)
 2. Motor aspects of experiences of daily living (13 questions)
 3. Motor Examination (18 questions)
 4. Motor Complications (6 questions)
 - Each question is scored 0-4 (larger means more severe)
 - Severity rating is sum of scores

UPDRS is subjective (inaccurate) and logistically difficult to administer
Problems

• Inaccurate patient self-reports
 • Difficulties monitoring patient symptoms and medication response

• Subjective motor function measures
 • Difficulties monitoring disease progression

• Frequent clinic visits
 • Inconvenient for patient
 • Major contributor to high cost of PD treatment
Solution: Home-Monitoring

- Tremor
- Stiffness
- Medication intake
- Dyskinesia

Project funding through DHTI
AUTOMATED MOTOR SYMPTOM DETECTION THROUGH WEARABLES
Impacts

• Enable clinicians to track their patients:
 • Symptom occurrences
 • Medication response
 • Disease progression
• Facilitate a more personalized drug-therapy regimen
• Help evaluate candidates for deep brain stimulation (DBS)
• Develop a more objective severity estimate
Hardware Considerations

- Battery life
- Sensors
 - Accelerometer
 - Gyroscope
 - Magnetometer
- Cost
- Wearability
 - Size
 - Ease of use
 - Aesthetic appearance
Progress to Date

• Development of machine learning algorithms

• Tests on three data sets:
 • Synthetic data
 • Accelerometer data of human motions
 • Accelerometer data of simulated PD tremor (using healthy subjects)
Segment-based Support Vector Machines (Seg-SVMs)
Segment-based Support Vector Machines (Seg-SVMs)

1. Model
2. Scores (likelihood of being a symptom)
Segment-based Support Vector Machines (Seg-SVMs)
Progress to Date

• Development of machine learning algorithms
• Tests on three data sets:
 • Synthetic data
 • Accelerometer data of human motions
 • Accelerometer data of simulated PD tremor (using healthy subjects)
Methods

• One healthy subject
• Single accelerometer on dominant wrist
• Simulated tremor events (10-30 seconds each)
• Training data:
 • 1 hour of normal activity
 • 10 simulated tremor events
• Testing data:
 • 2 days of normal activity (excluding sleeping)
 • 10 simulated tremor events
Training Data

![Graph showing acceleration over time with x, y, and z-axis data.](image)
Training Data

![Graph showing acceleration as a function of time with three axes (x, y, z) plotted over time. The graph displays various data points and trends.](image)
Testing Data Results

![Graph showing acceleration and score over time](image)
Testing Data Results

Score (confidence)

Time
Summary

• Problem – Current PD treatment protocols suffer from several shortcomings
 • Frequent clinic visits (inconvenient and costly)
 • Inaccurate monitoring of patients between visits
 • Subjective motor function assessment tests
• Solution – home-monitoring using the Microsoft Kinect sensor and wearable devices
• Current Progress
 • Developed machine learning algorithms
 • Tested algorithms on three datasets (synthetic, human motion, simulated tremor)
• Next Steps
 • Collect data from PD patients
 • Test algorithms
QUESTIONS?