ET 013

Extracting CO₂ from Ambient Air: A Novel Technology to Mitigate Global Climate Change

Gregory V. Lowry
Assistant Professor, Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA

Allen Robinson
Associate Professor, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA

David Keith
Associate Professor, Department of Engineering & Public Policy, Carnegie Mellon University, Pittsburgh, PA

Joshuah Stolaroff, Andy Grieshop and Meghan Smith
Graduate Students, Carnegie Mellon University, Pittsburgh, PA

Industry Participants
Heyl and Patterson, Canonsburg, PA
Dorr-Oliver EIMCO, Inc., Pittsburgh and Allentown, PA
Los Alamos National Laboratory (LANL)

Abstract
This collaborative project between researchers at CMU, LANL, and PA designers and manufacturers of thermal processing equipment will develop a novel carbon mitigation technology to meet the future restrictions on CO₂ emissions. The project goals are to provide a robust engineering and cost analysis of an alkali metal-based system for extracting CO₂ from ambient air and producing a concentrated CO₂ stream for geologic sequestration, and to experimentally demonstrate the feasibility of this system. At the end of year 1, project deliverables will include design criteria and cost estimates for: i) an efficient contactor for CO₂ extraction from air, and ii) a next-generation calciner capable of capturing CO₂ generated during CaCO₃ calcination.